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<-mSjenal detection in a large segment of non-
Gaussian and non-stationary Arctic under-ice noise,
which contains both high power narrow-band and
impulsive components. is examined. 1t is shown that
the correlation functions of sub-segments of data
change significantly. and if ignored. can degrade the
performance of a detecior. For a false alarm proba-
bility of 0.05 and a known constant signal, the
matched filter was on average 17.6% better than a
detector designed assuming independent noise sam-
ples. It is alsc shown that pre-processing the data
with an adaptive noteh filter. then using the matched
filter will result in a further improvement of about
G%. Additionaliz. the effect two different signal
shapes have on the performance of the matched filter
is examined, ; '
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\Withi the goal of creating a database of under-ice
noicc. in 1980 a mdti-institutional researcl program colla-
borated to record Arctic under-ice data. The data. FRAM
If. was recorded on 23-24 April 1980, from a pack ice floc.
at 86°N 25°W. An omnidirectional hydrophone, radio
linked to a receiver, was suspended to a depth of 91m in
4000m deep water. The data. recorded on an analog device.
was then bandpass filtered from 0.01-5kHz. The particular
data segment being analyzed was recorded on the 23 April
from 11:30 to 11:40 pm. Subsequent to the bandpass filter
previously mentioned. the data was passed through a fow
pass filter with cutoff of 2.5 kHz. and digitized with a sam-
pling frequency of 10 kHz. A total of 6.150.144 data sam-
ples were taken, which conveniently breaks down to 6006
records with each record containing exactly 1024 samples
[1.2).

Several authors have looked at this particular data
segment in varving degrees of detuil. Dwyer {17 took several
different approaches to analvzing the under-ice data. He
examined the first four central moments in the time
domain and concluded that the noise i< non-stationary awd
non-Gaussian. A sitailar analvsis carried out in the fre-
quency domain yielded comparable resulte, The energy
spectrum indicated that the ice noice was heavier tailed
than a Gaussiar source processed in the same fashion. in
agreement with the result< of Greene and Buck [3]. From
an examination of the spectrum and the time domain plot-
of the data. both narrow-band and impulsive components

were identified. The existence of these components was
not surprising. since the floe was moving slowly throughout
the experiment. As suggested by the work of Milne and
Ganton [4. the movement of the floe would cause rifting
and cracking of the ice.

Veitch and Wilks {2] took a slightly different approach
since their objective was to develop a statistical mode! for
the under-ice noise. Their work confirms the presence of
narrow-band and impulsive components. but suggests that
the background noise is Gaussian. By examining the first
four central moments of the data in detail. they noted a
strong correlation between records with large kurtosis and
large skew. They also determined that a large kurtosis was
associated with high amplitude bursts. In addition, it was
proposed that the Arctic data could be modeled in the fre-
quency domain as a mixture of a2 Gaussian background pro-
cess. a sum of a random number of narrow-band com-
ponents, each with random phase and amplitude. and what
is. in some sense. an error term. The main drawbacks of
the model are that the impulsive component. which has
been verified as being present. is not modeled specifically.
Also the weights and number of sinusoidal components are
not modeled constructively: that is, for some arbitrary seg-
ment of the data. the number of tones is unknown.

Recently. Nielsen and Thomas [5] proposed that the
univariate statistics of the Arctic data could be modeled by
the generalized Gaussian family. with the parameters of the
mode] estimated from the data. The model was shown to
be a reasonably accurate representation of the empirical
probability mass functions for blocks (5 records) of data,
but was not accurate encugh for the resulting Neyman-
Pearson optimal detector to show an improvement over a
simple linear structure.

Let a sample function of a continuous parameter ran-
dom process be sampled at the Nyquist frequency, yielding
samples r,. Define the time correlation functions as

hY
Pk = _\- EIrII‘*k

1=]

Equivalently. for any realization z. the Fourier transform of
the realization can be used 10 compute the power spectrum,
which can then be inverse Fourier transformed to obtain an
estimate of the time correlation function. The Arctic data
was sampled at 10 kHz, which is twice the Nyquist fre-
quency. For these computations the data was decimated by
a factor of two so that the sampling {requency was equal to
the Nyquist frequency: thus. the correlation functions were
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computed using .N=512.

Since time correlation functions for real processes are
even about the origin. k=0, the graphs of typical correla-
tiot. functions, shown in Figures 1 - 4. are plotted only for
k=0 1. 2..... 236. In general, it was found that the correla-
tion function took on one of four different shapes. The
time correlation function of record 0901. Figure 1, shows a
mixture of a decayving low frequency component with a
small amplitude high frequency component. The main
variations for this type of function are the rate of decay
and the amplitude of the high frequency component.
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Figure 1 - Time Correlation Record 0901

Figure 2 shows the correlation function for record
0903. approximately one-half second later than record 0901,
The correlation drops rapidly as k increases, and then has
small amplitude variations about zero. A close examination
of this correlation function shows that significant correla-
tions exist for the first three shifts. The drastic change in
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Figure 2 - Time Correlation Record 0905

the shape of the correlation function in a short period of
time, as illustrated by Figures 1 and 2. is not unusual for
this data.

The third typical correlation function is shown in Fig-
ure 3. For record 1205 the correlation is a mixture of a low
frequency and a high frequency component. The result is
that the correlation function looks like a corrupted AM sig-
nal. The principal variations with the general shape are in
the magnitude of the correlation for small k, and the decay
rate of the high frequency component.
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Figure 3 - Time Correlation Record 1205

One of the most interesting correlation functions
belongs to the final category. In Figure 4 the correlation
function for data record 3905 is shown. The correlation for
this data is very high, and periodic, with peak correlations
greater than 0.5 for shifts greater than zero. The peak
correlation for shifts other than zero were found to be plus
or minus one for some data records, and the envelope shape
varied greatlv. The main factor correlation functions of
this type bave in common is the presence of a single, high
powered periodic component.

Adaptive Notch Filter

The correlation between data samples, which has been
shown to be significant in the Arctic under-ice noise, pro-
vides a complicating factor in the problem of signal detec-
tion. This results primarily from inability to model the
multivariate density if the data is known to be non-
Gaussian. A common approach to working with highly
correlated noise is to pre-whiten the data, ideally resulting
in independent noise samples. Sub-optimal pre-whiteners,
which are designed to reduce instead of eliminate the corre-
lation between data samples, are used with real noise
sources,

For environments such as the Arctic data, which con-
tain a combination of narrow-band and wideband processes,
an adaptive line enhancer {6] is commonly used to separate
the two processes. Suppose the received vector Y is the
sum of two components;
and a sinusoidal component .
mathematically as

We can represent this
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Figure 4 - Time Correlation Record 3905

Y=N48

In Figure 5 we design the filter to be an adaptive notch
filter (ANF) with a gain of unity everyvwhere except at a
specified band of frequencies. where the gain i< zero. The
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Figure 5 - Adaptive Line Enhancer

filter output will be the white noise .\ and thr» outpmt of

the difference operator will be the sinusoid £ We define
the ANTF as follows (7]
H(z) = :;'iﬁ_tl_)
= 4abr+
Then. we have
bandwidth = 2(1 — ), ~¢[0.1]
normalized center frequency = cos™'(—=6/2). b ¢[-2.2]

For an input sequence y; and output sequence of the ANF
1wy, we have

wp =y + bykoy + Yoo — byuwsoy — Puroo

For a fixed notch width, the only adaptive parameter of the
filter is &, which controls the center frequencx of lhe notch.
To derive the update equation for &, we minimize uy® using
a gradient search algorithm. then

biyy = b + step wy (yi—y ~ v wi—y)

The variable step. which can be either fixed or adaptively
set, controls the adaptation speed of the filter and the vari-
ance of the filter center frequency once steady state has
been achieved. That is, a value of step too small will result
in a long time for the filter to adjust to the proper center
frequency. however, once there, only small changes in the

filter center frequency will occur. The converse results will
hold for a value of step too large. One advantage of the
ANTF is that it can be implemented easily as a time domain
processer. in contrast with the frequency domain pre-
processor proposed by Dwyer (8].

As an example of the effect the ANF can have on the
correlation function. Figures 6 - 7 show the correlation
function for record 4201 before and after filtering. The
ANF essentially removes the high frequency component
which dominates the correlation function, resulting in data
which is much less correlated. The results are not always
as dramatic as with record 4201. Specifically, if the data
contains no dominant narrow-band component, little differ-
ence in the correlation function after filtering is observed.
Also, when the data contains multiple narrow-band com-
ponents, the ANF only removes the highest powered; thus
the filtered data still has a correlation function with
periodic components.
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Figure 6 - Time Correlation Record 4201
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Figure 7 - Time Correlation Filtered Record 4201
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Consider the following simple detection problem. Let
A be the number of samples taken per decision. and let N
be the M-vector of samples from the zero mean noise pro-
cess and s be the known signal N-vector. Let fy; represent
the Ml-variate density of the noise. Define a binary
hypothesis problem in the following manner

Hoy: X=X\

Hy: X=N+s

where X is the vector received by the detector and is of
length M. Let

a = Probability ( decide H, | Hy true)
3= Probability ( decide H, | H, true)

The Nevman-Pearson criterion can be written as follows.
Fix some ag. Define the optimal detector to be the detec-
tor which maximizes the power J for any a < ag. Define
the likelihood ratio { as follows

X —5)
Nl

Then the optimal detector can be written as
Hz) 2 T — H,
I(L' < T - Ho

The threshold T is chosen to satisfy the constraints on the
power Jand on the level a [9].

As mentioned before. for non-Gaussian data which is
correfated. estimating the multivariate density of the noise
may not be possible. One approach taken to circumvent
this problem is to assume that the multivariate statistics
are Gaussian: then using the Neyn,...-Pearson criteria. the
optimal likelihood ratio is the matched filter. If R is the
Al x M covariance matrix of the noise. then the matched
filter is defined as

1Y) =log

lz) = sTR 1z
For independent noise samples, EN;N; = §,;0° and the
covariance matrix R = 0" ], where Iis an M x Af identity
matrix. Consequently. the likelihood ratio reduces to
{(z) =87z /0°. The resulting detector is then a correlator.
In addition only the variance of the noise & need be
estimated.

For correlated data the estimation of the elements of
the covariance matrix is necessary. While the Arctic noise
does not appear to be stationary in any sense, we will
assume that within a record (that is 1024 contiguous sam-
ples) the data is at least wide sense stationary and ergodic.
and that the mean and variance of the noise are known
exactly. Under the assumption of ergodicity. the correla-
tion function is equivalent to a vector of expected values.
Py = EX;Xj,. Define the covariance matrix of the noise
a-

R =EXX, =R, =R_, =P_

Each record contains N'=1024 samples: thus P is com-
puted for k=0, 1, .., 1023. For a signal length of AZ, only
the first A/ correlations are used in the formation of R.
The resulting covariance matrix R is symmetric and Toe-
plitz. For R to be a valid invertible covariance matrix, we

require that it be positive definite.

For convenience, the data was normalized such that
Po =1. Thus. the covariance matrix is °R, where ¢ is
the variance of the record and R is the normalized covari-
ance matrix. Henceforth, we refer to the normalized covari-
ance matrix as the covariance matrix. A signal length of
M =4 was used for all simulations. For the entire data
set. B006 covariance matrices were computed. The
minimum eigenvalue was always strictly greater than zero,
insuring that R was indeed positive definite, and typical
values for the four eigenvalues were 0.0077, 0.163, 1.216.
and 2,581, In addition, a comparison of covariance
matrices showed that the elements changed slowly over
time. This suggests the assumptions of wide sense stationar-
ity and ergodicity are not unreasonable for such a short
segment of data (1 record = 0.1 seconds).

To determine the effect that correlation between data
samples has on the signal detection problem, the power 3
for the following detectors was compared when M=1.

D1] Correlator (R =d21)
D2| Matched Filter
D3| ANF - Matched Filter

For [D1}-[D3]. in order 1w compensate for the non-
stationary characteristic of the noise, parameters were
estimated on a record-by-record basis. For [D1]. & was
estimated; for [D2}-[D3], the covariance matrix R was

estimated, using the method described previousiy. In par-
ticular, for [D3], the ANF was used as a preprocessor, and
the covariance matrix was estimated using the filtered
data. For convenience the data was grouped into blocks of
20 records. Thus each block contained 20480 data samples,
and represented a time interval of about 2 scconds. We
had a total of 300 blocks, and the performance was
evaluated for each block.

In Table 1. the mean and variance of the ratio of the
power levels for (D1] to [D2] are shown, along with the
minimum and maximum values of the ratio, and the perfor-
mance improvement. We defined the performance improve-
ment to be

1(Dj. Di)= B0i=B0i | 100
Boj;

The results for detectors [D2] and [D3] are presented in
Table 2. Examining Tables 1 and 2, we se that the largest
improvements in performance are for a =0.05; and while
the performance improvement decreases as o increases, the
improvement is still significant for a = 0.20. For a = 0.05,
[D2] is approximately 17.6% better and [D3] is approxi-
mately 29.2% better, on average, than [D1]. For a = 0.20,
the improvements are smaller, but at 12.4% and 19.39,
they are still significant.

Given that the Arctic data is highly correlated at
times. the improvement that the matched filter has over
the simple correlator is understandable. The additional
improvement which occurs when the ANF is used as a pre-
processor is not as clear. It is well known that the output
of a linear recursive filter is more Gaussian than the input.
Thus using the ANF as a pre-processor not only whitens
the data. by removing the highest powered periodic com-
ponent, but also results in data which is more Gaussian. It




Ratio of Power Levels between [D1] and [D2]

3p1 /3 ps
Q 0.05 010 0.15 0.20
mean Q.850 0.862 0.877 0,580
variance 6.09e-03 5.43¢-03 5.00e-03 4.28¢-03
minimum 0587 0.630 0.638 0.679
maximum 1.072 0.981 0.992 0.989
1(D1.D2) 17.62 15.99 _14.06 12.46
Table 1
Ratio of Power Levels between [D2] and [D3]
3p2 /33
Q 0.05 0.10 0.15 0.20
mean 0.910 0.926 0.927 0.943
variance 5.82¢-03 3.37e-03 2.04e-03 1.49¢-03
minimum 0.597 (0.639 0.712 0.753
maximuym 1.067 1.025 1.013 1.002
1(D2.D3) 9.85 7.99 6.77 6.06
Table 2

is clear from these results, that disregarding the correlation
between data samples will result in a performance degrada-
tion.

The minimum and maximum values of the ratios are
also interesting. While the maximum values of the ratio
are near unity. indicating that the detectors have similar
performance. the minimum values range from 0.58% to 0.75.
indicating that under some conditions one detector is much
better than the other. In particular. blocks 80-90 .
170-21G can be shown by an analysis of their correlation
functions to contain periodic components. For these cases,
[D2] is about 25%¢ better and [D3] is approximately 477
better than [D1} for a =0.20. Figures 89 are plots of
3py /3ps and Fpo /3ps for a =0.20 to illustrate more
clearly the improvements.

One may challenge the validity of using the same data
to estimate the covariance matrix and compute the detec-
tion probabilities. Tests were run where the covariance
matrix was updated every record. every fifth record. every
tenth record. and every twentieth record. It was found
that the performance levels did not change appreciably for
updates occurring as slowly as every ten records. If the
update was performed every twenty records, once a block.
only a small performance loss occurred.

For all computations, a constant signal was used such
that the sum of the elements of the signal vector equaled
the noise standard deviation. i.e. input S/N=1. For the
matched filter [D2]. the output S/N can be written as

<

T; ==
For any positive definite matrix A4 such that .. Moo
are the minimum and maximum eigenvalues of A. by
Rayleigh’s principle we have [10]
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Figure 8 - Ratio of Power Levels between [D1] and [D2]
for a =10.20
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